梅特勒托利多稱重模塊環境因素
由于環境因素會影響稱重模塊系統的精確度和安全性,因此在設計階段一定要考慮到這些因素。如果秤會受到風、地震或撞擊荷載的影響,您可能需要使用較大量程的稱重模塊和/或添加控制設備,從而使秤在極端情況下保持穩定狀態。
風力載荷安裝在室外或者開放式建筑或架構中的秤會受到風力的影響,由于種種原因需要考慮到 這一因素。秤
體受到風力影響會產生新的力,作用于稱重模塊,并且會導致稱重模塊過載,個別情況下還會導致秤傾倒。同時也會嚴重影響秤的性能。下面兩部分會對這些要點作進一步探討。室外料罐和料倉秤通常為垂直圓筒形,通過支架來提高,并受到圖 4-1 中所示的通用型壓式稱重模塊的支撐,符合下面所介紹的類型(除非另有說明)。
梅特勒托利多稱重模塊典型室外料罐秤
結構穩定性
在秤的穩定性分析中,一般會假設風從任意水平方向吹來。風吹向秤的側面對迎風一側產生水平作用
力,這會對秤產生幾個結構效應:
1.稱重模塊必須通過施加水平力來抵抗風力。不得過 稱重模塊的額定大水平力。
2.風力使重量從迎風面的稱重模塊轉移到背風面的稱重模塊上,請參見第 10 章,附錄 2,計算反作用力,進一步探討這一點。如果過了稱重模塊的額定量程,就會對其造成損壞,稱滿載時容易發生這樣的狀況。因此可能需要選擇額定量程較大的稱重模塊。將稱重模塊放在靠近秤的重心的位置,如第 5 章,圖 5-19a 所示,可大程度上降低這一效應。
3.在個別情況下,風力會導致秤傾倒,特別是高且細的料罐或料倉。秤零負載時容易發生傾倒。為防止發生傾倒,所采用的稱重模塊必須具備防傾倒性能,并且不得過其大上升力額定值。個別情況下可能需要添加外部約束力來防止強風吹到料罐,請參見第 5 章“其它容器控制方法”。
在計算風力時,重要的因素是要確定(設定)現場的基本風速,一般情況下,這可以在地區建筑條例的等風速線圖中找到。同時,現場的暴露程度也很重要,例如秤位于峭壁上,或者面對著大片開放水域、鹽場等?秤的設計必須符合當地的建筑條例。另外,許多國家要求必須由經認證可以在該地區執行工作的專業工程師來完成這一類型的結構設計工作。梅特勒-托利多認為,風荷載設計必須由本地經過認證的經驗豐富的專業人員根據本地條例及不同的情況來完成;我們的數據表為設計師提供進行此類分析所需的稱重傳感器及稱重模塊數據。
壓式稱重模塊和拉式稱重模塊
稱重模塊分為兩種基本類型:
壓式稱重模塊旨在在稱重模塊頂部安裝料罐或其它結構。拉式稱重模塊用于在稱重模塊上懸掛料罐或
一 其 它 結 構 。
您應該采用壓式稱重模塊還是拉式稱重模塊,這取決于具體的應用。表 3-1 簡要介紹了影響稱重模塊選擇的一般設計考慮因素。
考慮因素
壓式稱重模塊與拉式稱重模塊的對比
設計考慮因素 壓式稱重模塊 拉式稱重模塊
地面空間 需要足夠的地面空間來容納料罐。料罐周圍可
能需要緩沖空間。 無需地面空間,并且可以懸掛起來,從而在料
罐下方自由移動。
結構限制 不牢固的地面可能需要另外加固,或者特別進行安裝, 從而能夠承受料罐裝滿物料后的
重量。 不牢固的頂部支撐/天花板可能需要另外加固, 或者進行特別安裝,從而能夠承受料罐裝滿物
料后的重量。
重量限制 一般情況下無限制。甚至連載荷分配本身都帶有三個容器支撐,如果數量過四個就難達
到限制值。 拉式稱重模塊大可承受 20,000 磅 [10 噸] 的重量。這一限制和結構因素會限制張力系統的
容量。
稱重傳感器校準 設計可能會有所不同,并且必須考慮地面的傾斜度、可用的支撐梁以及料罐的大小、形狀和
狀況。 元件校準不會有太大差別,因為拉式桿和其它支撐設備往往支持大多數傾斜度。
料罐和容器設計
將出現料罐秤的精確度會受到料罐本身設計的影響。應設計新的料罐,保證其在物料重量作用下不會嚴重彎曲,并且不會在滿載或空載的情況下出現壓力失衡。如果您要將現有料罐轉至秤上,您可能需要修改料罐來滿足這些要求。
壓式秤的穩定性
稱重模塊旨在將負載準確移至稱重傳感器,同時避免發生上一部分中所述的不必要的作用力。
是從 Centerlign(一種典型壓式稱重模塊)頂板的簡化橫截面圖。
頂板
搖桿銷
稱重傳感器
梅特勒托利多稱重模塊Centerlign 頂板的簡化橫截面
它顯示的是置于搖桿銷上的頂板,是將載荷移至稱重傳感器的工具。搖桿銷的上表面為球面半徑,這就是說頂板只有單點支撐,理論上應為頂板的中心點。另外,稱重模塊必須具備允許頂板在發生熱膨脹和收縮時水平移動的機制,這種情況下,搖桿銷經過 5-7 次傾斜,使頂板的支撐點水平移開中心點位置。前述狀況有兩個重要后果:
1.無法向頂板施加力矩來防止其轉出水平面之外。
2.頂板會自然轉出水平面之外。即使從上方向頂板添加負載,下面的支撐點也會因為熱膨脹/收縮輕微偏離中心,這樣就會產生多種轉動頂板的可能。這一情形會因為必然的制造和安裝容差而加重。
這些點對所有稱重模塊都適用,并且對壓式秤的設計師有很多啟示:
?一個單獨的壓式稱重模塊無法支撐一個秤,至少需要三個稱重模塊。在平面圖中,稱重模塊不能在一條直線上,三個稱重模塊必須安排成三角形,四個則要安排成正方形或矩形等。
?作用于稱重心的垂直重力應始終在支撐點規定的稱重模塊頂板上的水平面范圍內;不得出這一范圍。換句話說,在正常的稱重狀況下一定會對稱重模塊產生一些向下的作用力。不能過任何稱重模塊的額定量程,因為可能會損壞稱重傳感器;理想狀況下重心應在位置,這樣所有的稱重模塊才能平均負載。
?請參見圖 5-8,稱重模塊必須夾在堅固的底座(下部)和堅固的秤結構(下部)之間,以確保基座和頂板保持在水平面內。底座可以是混凝土,也可以是鋼結構。秤結構可為鋼質平臺,也可為料罐、料斗等,增加稱重模塊頂板的堅固性。如果料罐有支架,支架一定要牢固并且呈十字支撐,請參見下面的圖 5-15a 和 5-15b。
典型的秤配置(可看到 4 個稱重模塊中的 2 個)
?基板不能直接置于腳輪或車輪上,如圖 5-9 所示。可以制作案秤,但是車輪/腳輪與稱重模塊基板之間必須有堅固的架構。
精確度 中等精度 低精度 水平檢測
精確度等級 高 好 良好 一般
系統精確度
(系統量程百分比)* 0.015 至 0.033 0.033 至 0.10 0.10 至 0.50 大于 0.50
稱重傳感器利用率
(額定量程百分比)* ≥ 50 ≥ 30 ≥ 30 ≥ 20
應用類型 制劑、調配、配料、精確填料使用的反應容器 收集罐、料斗、傳送系統、配料、填料 收集罐、料斗、傳送系統 原料和商品的散裝存儲罐
梅特勒托利多稱重模塊
稱重傳感器認證 C6 或 C3 OIML、5000d CIII NTEP C3 至 D1 OIML、3000d
CIII 至 10,000d CIIIL NTEP D1 OIML、1000d CIII NTEP
(未批準) 批準或未批準
稱重模塊載荷懸掛 自校正 自校正或浮動 自校正、浮動或固定 自校正、浮動或固定
固定或靜止的稱重傳感器 無 無 無 僅用于液體或氣體
梅特勒托利多稱重模塊
料罐特性 準備校驗砝碼、穩固的安裝支撐 準備校驗砝碼、穩固的安裝支撐 準備校驗砝碼、穩固的安裝支撐 穩固的安裝支撐
進口和出口管路 僅限靈活型 僅限靈活型 靈活型和穩固型 靈活型和穩固型
底座 穩固且不受周圍因素的影響,統一撓曲度 穩固且不受周圍因素的影響,統一撓曲度 穩固且撓曲度統一 穩固且撓曲度統一
型號 自校正 自校正、浮動或張力 自校正、浮動、固定或張力 活動稱重模塊與固定稱重模塊或固定底座的結合
物料 建議使用不銹鋼 碳鋼、不銹鋼 碳鋼、不銹鋼 碳鋼、不銹鋼
稱重模塊稱重系統性能
精確度、分辨率以及可重復性是衡量一個稱重系統性能的基本概念。精確度指的是秤儀表上的讀數與秤上放置的實際重量的接近程度。秤的精確度通常根據公認的標準來衡量,比如 NIST 認證的校驗砝碼。
分辨率指的是數字秤能夠檢測到的小的重量變化。分辨率根據增量大小進行衡量,取決于稱重傳感器和數字儀表的功能。數字重量儀表可能能夠顯示非常小的增量,比如 0.01 磅 [5 克];但是這并不表
示系統的精確度達 0.01 磅 [5 克]。
圖 3-1 有助于您區分精確度和分辨率。即使儀表的分辨率為 0.01 磅 [0.005 千克],重量度數的精確度也
不能達到 0.32 磅 [0.145 千克]。分辨率取決于儀表的電子電路。現在的許多工業儀表都可以都可以將稱
重傳感器信號分為 1,000,000 個刻度,并且實際可以顯示 100,000 個刻度。顯示的分辨率取決于儀表的分配方式。但是顯示增量的大小不能使秤精確到該增量。
梅特勒-托利多有多少個稱重模塊?
可重復性指的是當在秤上放置相同的重量時,稱能夠顯示相同的重量讀數。這在配料和填料應用中尤
為重要,每一批都需要相同量的物料。可重復性和精確度是緊密相關的。您所擁有的系統可重復,卻
未必準確;但是系統只有在可重復的情況下才能準確。
以下因素會影響稱重模塊稱重系統的精確度和可重復性。稍候本手冊對其進行了詳細說明。
?環境因素:風力、地震力、溫度、振動
?稱重模塊系統支撐結構
?料罐和容器設計
?管路設計(活動至固定連接)
?稱重傳感器和終端的質量
?稱重傳感器總量程
?校準
?操作 / 裝運因素
稱重模塊靜態與動態載荷
在為某個應用程序選擇稱重模塊時,考慮如何為稱重模塊施加載荷非常重要。料罐、料斗、料倉以及容器上的大多數稱重模塊應用都使用靜態載荷。如果是靜態載荷的話,則幾乎或者根本不會對稱重模塊產生剪切力。像輸送裝置、管架、機械秤轉換等應用以及帶有高功率攪拌機和混合機的秤使用動態載荷。使用動態載荷,在將產品放在秤上或進行加工的過程中會將水平剪切力傳輸至稱重模塊。請參閱第 6 章“壓式稱重模塊”,了解稱重模塊懸掛的類型以及其應用參數。
采用多少個稱重模塊?
對于現有安裝而言,稱重模塊的數量取決于現有支撐的數量。如果一個料罐有四個支架,那么您就需要使用四個稱重模塊。
而對于新的安裝而言,好選擇三點支撐系統,因為其確保了在稱重模塊上分配正確的載荷。如果考慮風、流體晃動或者地震載荷因素,那么料罐可能需要四個或四個以上的支撐來另外加固,防止其傾斜。
大多數的秤應用都采用三個或者四個稱重模塊。梅特勒-托利多儀表可以計算四個、八個,甚至多的稱重模塊的輸出總和,但是出四個以后就很難達到平均分配重量以及調整移位。
要計算每個稱重模塊的必要量程,請用系統總量程除以支撐的數量。總量程要應用安全系數,以防低估了重量或者重量分配不均。在第 6 章“壓式稱重模塊”和第 7 章“拉式稱重模塊”中講述了確定稱重模塊大小的程序。環境因素(如地震荷載和風力荷載)也會影響應用中稱重模塊的量程,請參見第 4 章“稱重模塊環境影響考慮因素”。
稱重模塊現場校準
另外一個要考慮的要素就是如何校準稱重模塊系統。如果您向現有料罐添加稱重模塊的話,可能需要改造料罐才能在上面懸掛合格的校驗砝碼。料罐至少要能夠支撐相當于產品凈重(規定量程)的 20%的重量。第 8 章“稱重模塊系統校準”中講述了一些現場校準的方法。
梅特勒托利多稱重模塊地震荷載
地震所產生的地震力是會影響料罐和料倉秤的強大的外力之一。地震指地面突然運動,它會對人造重 結構產生非常大的作用力。地震是由劇烈的火山噴發所致,但是常見且為嚴重的情況下,它們發生在地殼板塊的交界地帶。圖 4-2 中,每個點都表示 5 年內發生的 4 級或 4 級以上的地震;一般來
說,點的排列格局板塊邊界相吻合。某些地方的地殼板塊間可能會發生水平或垂直滑動,長期以來由于板塊間的摩擦可以防止這種狀況的發生;潛在的能量聚積,終克服摩擦力,突然發生滑動,這樣
就造成了地震。地震波從震源向四外輻射,從而使地表發生水平運動,并在地表形成地面波;這樣地震就會同時發生水平運動和垂直運動,并對地表的設備和結構產生相應的作用力。
梅特勒托利多稱重模塊大環境考慮因素
過去 40 年里,結構抗震設計原理得到重大發展,并且隨著從各大地震中吸取的教訓不斷納入各種設計規范,該原理將繼續完善。世界范圍內采用的設計規范很多,例如,美國廣泛采用 ICC 制定的國際建筑規范,而在整個歐洲則正在采用 CEN 制定的 EN1998 歐洲規范 8:結構抗震設計。由于液體在料罐中晃動會產生流體動力效應,因此在設計料罐時還要考慮到其它因素;已專門為這一狀況編寫了規范,表 4-1 中列出了一些與高位料罐相關的規范。
梅特勒托利多稱重模塊
EN1998-4 歐洲規范 8:結構抗震設計第 4 部分:料倉、料罐和管路 CEN
D100 用于儲水的焊接碳鋼料罐 AWWA
D103 用于儲水的工廠涂層栓接鋼制料罐 AWWA
NZSEE 準則 存儲料罐抗震設計建議 NZSEE
ACI 350.1 含液體的混凝土結構的抗震設計及說明 ACI
表 4-1:高位料罐防震設計相關的規范
幸運的是,大多數地震都發生在遠離人口聚集地和工業中心的偏遠地區,但也有很多重要的例外。如果秤所在的地區采用地震設計規范,那么秤的設計必須符合這些規范。需要考慮的因素有很多,包括需要對抗的地震的嚴重性和類型、距離已知斷層的距離、現場土壤/巖層的類型和深度、底座類型以及秤在建筑或結構中的位置、秤的大小和配置、存儲的物料的毒性和震后秤所需的環境。另外,許多國家要求必須由經認證可以在該地區執行工作的專業工程師來完成抗震設計。梅特勒-托利多認為,抗震設計必須由本地經過認證的經驗豐富的專業人員根據本地條例及不同的情況來完成;我們的數據表為設計師提供進行此類分析所需的稱重傳感器及稱重模塊數據。
-/gjjabi/-
http://cqjwg.cn